Soil fauna plays a key role in many soil functions, such as organic matter decomposition, humus formation, and nutrient release, modifying soil structure, and improving its fertility. Soil invertebrates play key roles in determining soil suitability for agricultural production and realizing sustainable farming systems. They include an enormous diversity of arthropods, nematodes, and earthworms.…
In this book, papers pertaining to resource management for sustainable agricultural development are presented in four parts divided into ten chapters. Part I discusses the usage of water and waste management for sustainable agricultural development including aspects like irrigation management to prevent soil and ground water salinization, production of solid fuel from oil palm waste, sustainabl…
In irrigated agriculture, the study of the various ways water infiltrates into the soils is necessary. In this respect, soil hydraulic properties, such as soil moisture retention curve, diffusivity, and hydraulic conductivity functions, play a crucial role, as they control the infiltration process and the soil water and solute movement. This Special Issue presents the recent developments in the…
Understanding how to promote farmers’ use of carbon (C) centric practices known to increase soil C sequestration is needed to design information systems and orient policy, investment and environmental markets. Farmers undertake individual and collective actions using techniques that have varied over time and space according to land potential, farming systems, values and, evolving political an…
Organic soils of intact peatlands store 1/4 of the global soil organic carbon (SOC). Despite being an important source of methane (CH4), they are climate coolers because they continuously accumulate new organic carbon. However, when these organic soils are drained for agriculture, the resulting aerobic conditions lead to fast decomposition of the peat and the release of carbon dioxide (CO2) and…
Soil organic carbon sequestration has received increasing attention due to the important benefits it can have for ecosystem services and in particular food production, climate change mitigation and adaptation. Indeed, soils rich in organic carbon are, in general, more fertile and support plant growth better than carbon-depleted soils. On the other hand, management practices applied to increase …
Paddy rice systems are characterized by waterlogged conditions with high potential for CH4 emissions and soil organic carbon (SOC) sequestration. Therefore, it is necessary to evaluate the net global warming potential (GWP) of soil management considering SOC stock changes, and CH4 and N2O fluxes. Green manure application and straw retention slightly enhanced SOC stock, but highly increased net …
Increasing carbon storage in soils is one way of mitigating climate change. Carbon sequestration in agricultural soils through improved management is particularly interesting, because of low costs and technical readiness. In this chapter, we synthesize current knowledge on the impact of management practices that promote carbon accumulation in upland mineral soils. Following a brief overview of …
This book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and the German Science Foundation research unit DASIM (Denitrification in Agricultural Soils: Integrated con…
This book highlights concepts discussed at two international conferences that brought together world-renowned scientists to advance the science of potassium (K) recommendations for crops. There was general agreement that the potassium recommendations currently in general use are oversimplified, outdated, and jeopardize soil, plant, and human health. Accordingly, this book puts forward a signifi…